php获取mysql多个结果集返回

通常在开发时,mysql都是返回一个结果集,但如果多个结果集的话,
就需要做特殊处理。如下面代码所示:

$conn = mysqli_connect('127.0.0.1', 'root', '', 'test', 3306);
$sql = "sql * from tbxx where 1";
$aa = getMultiResult($sql, $conn);
var_dump($aa);
 
 
 
function getMultiResult($query, $conn) {
 
$ret = [];
if ($conn->real_query($query)) {
	do {
		if ($result = $conn->store_result()) {
			while ($row = $result->fetch_assoc()) {
				array_push($ret, $row);
			}
		}
	} while ($conn->more_results() && $conn->next_result());
}
return $ret;
}

继续阅读

phpmyadmin支持多个mysql服务器切换

phpmyadmin本身已经有这方面的功能,只要简单修改一下配置就可以实现

修改文件:config.inc.php

/*
 * First server
 */
$i++;
/* Authentication type */
$cfg['Servers'][$i]['auth_type'] = 'cookie';
/* Server parameters */
$cfg['Servers'][$i]['host'] = 'localhost';
$cfg['Servers'][$i]['user'] = 'root';
$cfg['Servers'][$i]['password'] = '';
$cfg['Servers'][$i]['connect_type'] = 'tcp';
$cfg['Servers'][$i]['compress'] = false;
/* Select mysql if your server does not have mysqli */
$cfg['Servers'][$i]['extension'] = 'mysqli';
$cfg['Servers'][$i]['AllowNoPassword'] = true;
 
// ------------- end First server
 
/*
 * Second server
 */
$i++;
/* Authentication type */
$cfg['Servers'][$i]['auth_type'] = 'cookie';
/* Server parameters */
$cfg['Servers'][$i]['host'] = '192.168.239.128';
$cfg['Servers'][$i]['port'] = '3306';
$cfg['Servers'][$i]['user'] = 'lok';
$cfg['Servers'][$i]['password'] = '123456';
$cfg['Servers'][$i]['connect_type'] = 'tcp';
$cfg['Servers'][$i]['compress'] = false;
/* Select mysql if your server does not have mysqli */
$cfg['Servers'][$i]['extension'] = 'mysqli';
$cfg['Servers'][$i]['AllowNoPassword'] = false;
 
// -------------- end Second server

继续阅读

高手详解SQL性能优化十条经验

1.查询的模糊匹配

尽量避免在一个复杂查询里面使用 LIKE ‘%parm1%’—— 红色标识位置的百分号会导致相关列的索引无法使用,最好不要用.
解决办法:
其实只需要对该脚本略做改进,查询速度便会提高近百倍。改进方法如下:
a、修改前台程序——把查询条件的供应商名称一栏由原来的文本输入改为下拉列表,用户模糊输入供应商名称时,直接在前台就帮忙定位到具体的供应商,这样在调用后台程序时,这列就可以直接用等于来关联了。
b、直接修改后台——根据输入条件,先查出符合条件的供应商,并把相关记录保存在一个临时表里头,然后再用临时表去做复杂关联

2.索引问题

在做性能跟踪分析过程中,经常发现有不少后台程序的性能问题是因为缺少合适索引造成的,有些表甚至一个索引都没有。这种情况往往都是因为在设计表时,没去定义索引,而开发初期,由于表记录很少,索引创建与否,可能对性能没啥影响,开发人员因此也未多加重视。然一旦程序发布到生产环境,随着时间的推移,表记录越来越多
这时缺少索引,对性能的影响便会越来越大了。
这个问题需要数据库设计人员和开发人员共同关注
法则:不要在建立的索引的数据列上进行下列操作:

(1) 避免对索引字段进行计算操作
(2) 避免在索引字段上使用not,<>,!=
(3) 避免在索引列上使用IS NULL和IS NOT NULL
(4) 避免在索引列上出现数据类型转换
(5) 避免在索引字段上使用函数
(6) 避免建立索引的列中使用空值。

3.复杂操作

部分UPDATE、SELECT 语句 写得很复杂(经常嵌套多级子查询)——可以考虑适当拆成几步,先生成一些临时数据表,再进行关联操作

4.update

同一个表的修改在一个过程里出现好几十次,如:

update table1
set col1=...
where col2=...;
update table1
set col1=...
where col2=...
......

象这类脚本其实可以很简单就整合在一个UPDATE语句来完成(前些时候在协助xxx项目做性能问题分析时就发现存在这种情况)

5.在可以使用UNION ALL的语句里,使用了UNION

UNION 因为会将各查询子集的记录做比较,故比起UNION ALL ,通常速度都会慢上许多。一般来说,如果使用UNION ALL能满足要求的话,务必使用UNION ALL。还有一种情况大家可能会忽略掉,就是虽然要求几个子集的并集需要过滤掉重复记录,但由于脚本的特殊性,不可能存在重复记录,这时便应该使用UNION ALL,如xx模块的某个查询程序就曾经存在这种情况,见,由于语句的特殊性,在这个脚本中几个子集的记录绝对不可能重复,故可以改用UNION ALL)

6.在WHERE 语句中,尽量避免对索引字段进行计算操作

这个常识相信绝大部分开发人员都应该知道,但仍有不少人这么使用,我想其中一个最主要的原因可能是为了编写写简单而损害了性能,那就不可取了
9月份在对XX系统做性能分析时发现,有大量的后台程序存在类似用法,如:

......
where trunc(create_date)=trunc(:date1)

虽然已对create_date 字段建了索引,但由于加了TRUNC,使得索引无法用上。此处正确的写法应该是

where create_date>=trunc(:date1) and create_date

或者是

where create_date between trunc(:date1) and trunc(:date1)+1-1/(24*60*60)

注意:因between 的范围是个闭区间(greater than or equal to low value and less than or equal to high value.),

故严格意义上应该再减去一个趋于0的小数,这里暂且设置成减去1秒(1/(24*60*60)),如果不要求这么精确的话,可以略掉这步。
继续阅读

mysql分表的3种方法

一,先说一下为什么要分表

当一张的数据达到几百万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了。分表的目的就在于此,减小数据库的负担,缩短查询时间。
根据个人经验,mysql执行一个sql的过程如下:
1,接收到sql;2,把sql放到排队队列中 ;3,执行sql;4,返回执行结果。在这个执行过程中最花时间在什么地方呢?
第一,是排队等待的时间,
第二,sql的执行时间。
其实这二个是一回事,等待的同时,肯定有sql在执行。所以我们要缩短sql的执行时间。
mysql中有一种机制是表锁定和行锁定,为什么要出现这种机制,是为了保证数据的完整性,我举个例子来说吧,如果有二个sql都要修改同一张表的同一条数据,这个时候怎么办呢,是不是二个sql都可以同时修改这条数据呢?很显然mysql对这种情况的处理是,一种是表锁定(myisam存储引擎),一个是行锁定(innodb存储引擎)。表锁定表示你们都不能对这张表进行操作,必须等我对表操作完才行。行锁定也一样,别的sql必须等我对这条数据操作完了,才能对这条数据进行操作。如果数据太多,一次执行的时间太长,等待的时间就越长,这也是我们为什么要分表的原因。

二,分表

1,做mysql集群,例如:利用mysql cluster ,mysql proxy,mysql replication,drdb等等
有人会问mysql集群,根分表有什么关系吗?虽然它不是实际意义上的分表,但是它启到了分表的作用,做集群的意义是什么呢?为一个数据库减轻负担,说白了就是减少sql排队队列中的sql的数量,举个例子:有10个sql请求,如果放在一个数据库服务器的排队队列中,他要等很长时间,如果把这10个sql请求,分配到5个数据库服务器的排队队列中,一个数据库服务器的队列中只有2个,这样等待时间是不是大大的缩短了呢?这已经很明显了。所以我把它列到了分表的范围以内,我做过一些mysql的集群:
linux mysql proxy 的安装,配置,以及读写分离
mysql replication 互为主从的安装及配置,以及数据同步
优点:扩展性好,没有多个分表后的复杂操作(php代码)
缺点:单个表的数据量还是没有变,一次操作所花的时间还是那么多,硬件开销大。
2,预先估计会出现大数据量并且访问频繁的表,将其分为若干个表
这种预估大差不差的,论坛里面发表帖子的表,时间长了这张表肯定很大,几十万,几百万都有可能。 聊天室里面信息表,几十个人在一起一聊一个晚上,时间长了,这张表的数据肯定很大。像这样的情况很多。所以这种能预估出来的大数据量表,我们就事先分出个N个表,这个N是多少,根据实际情况而定。以聊天信息表为例:
我事先建100个这样的表,message_00,message_01,message_02……….message_98,message_99.然后根据用户的ID来判断这个用户的聊天信息放到哪张表里面,你可以用hash的方式来获得,可以用求余的方式来获得,方法很多,各人想各人的吧。下面用hash的方法来获得表名:
查看复制打印?

< ?php  
function get_hash_table($table,$userid) {  
 $str = crc32($userid);  
 if($str&lt;0){  
 $hash = "0".substr(abs($str), 0, 1);  
 }else{  
 $hash = substr($str, 0, 2);  
 }  
 
 return $table."_".$hash;  
}  
 
echo get_hash_table('message','user18991');     //结果为message_10  
echo get_hash_table('message','user34523');    //结果为message_13  
?>

说明一下,上面的这个方法,告诉我们user18991这个用户的消息都记录在message_10这张表里,user34523这个用户的消息都记录在message_13这张表里,读取的时候,只要从各自的表中读取就行了。
优点:避免一张表出现几百万条数据,缩短了一条sql的执行时间
缺点:当一种规则确定时,打破这条规则会很麻烦,上面的例子中我用的hash算法是crc32,如果我现在不想用这个算法了,改用md5后,会使同一个用户的消息被存储到不同的表中,这样数据乱套了。扩展性很差。
继续阅读